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IFROWANN: Imbalanced Fuzzy-Rough Ordered
Weighted Average Nearest Neighbor Classification
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Abstract—Imbalanced classification deals with learning from
data with a disproportional number of samples in its classes. Tra-
ditional classifiers exhibit poor behavior when facing this kind of
data because they do not take into account the imbalanced class dis-
tribution. Four main kinds of solutions exist to solve this problem:
modifying the data distribution, modifying the learning algorithm
for considering the imbalance representation, including the use of
costs for data samples, and ensemble methods. In this paper, we
adopt the second type of solution and introduce a classification
algorithm for imbalanced data that uses fuzzy rough set theory
and ordered weighted average aggregation. The proposal consid-
ers different strategies to build a weight vector to take into account
data imbalance. Our methods are validated by an extensive ex-
perimental study, showing statistically better results than 13 other
state-of-the-art methods.

Index Terms—Fuzzy rough sets, imbalanced classification, ma-
chine learning, ordered weighted average (OWA).

I. INTRODUCTION

L EARNING from imbalanced data is a challenging task
that has gained attention over the last few years [28], [35],

[41]. In contrast with traditional classification, it deals with
datasets where one or more classes are underrepresented. In
this paper, we consider the two-class case where one class (the
majority or negative class) is overrepresented, and the other
class (the minority or positive class) is underrepresented. This
characteristic is very common in real-world applications, such as
anomaly detection [33], medical applications [34], microarray
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data [49], database marketing [15], etc., and has opened up
a whole new field of research to develop new techniques to
overcome the imbalance problem.

Classical machine-learning algorithms often obtain high ac-
curacy over the majority class, while for the minority class the
opposite occurs. This happens because the classifier focuses on
global measures that do not take into account the class data
distribution [28], [35], [41]. Nevertheless the most interesting
information is often found within the minority class.

Many techniques for dealing with class imbalance have
emerged. These techniques can be grouped into four main cate-
gories: those that modify the data distribution by preprocessing
techniques (data level solutions), those at the level of the learn-
ing algorithm which adapt a base classifier to deal with class
imbalance (algorithm level solutions), those that apply different
costs to misclassification of positive and negative samples (cost-
sensitive solutions), and ensemble-based solutions that combine
the previous solutions by means of an ensemble.

In this paper, we present a new algorithm level solution to
classify imbalanced data that is based on the Fuzzy Rough Near-
est Neighbor (FRNN) classifier introduced in [32]. In order to
predict the class of a new test instance, the FRNN algorithm
computes the sum of the memberships of the instance to the
fuzzy-rough lower and upper approximation of each class. The
lower approximation membership expresses the degree to which
similar elements of the opposite class do not exist, while the up-
per approximation membership tells us to which extent similar
elements of the same class exist. Finally, FRNN assigns the
instance to the class with the higher sum.

However, this algorithm has some important weaknesses. On
one hand, its classifications are completely determined by the
closest samples in either class, thus making it very sensitive to
noise [44]. On the other hand, FRNN treats the positive and
negative class in a symmetric way and, hence, makes no provi-
sions for the class imbalance. Therefore, in this paper, we have
designed a new classifier called the Imbalanced Fuzzy Rough
Ordered Weighted Average Nearest Neighbor (IFROWANN)
algorithm; it computes the approximations taking into account
not only the closest samples of the opposite class, but all of
them, assigning them decreasing weights proportionate to their
similarity with the test sample x, following two steps:

1) We consider different weight vectors for the majority and
the minority class, taking into account the fact that the
former contains much fewer elements than the latter.

2) We aggregate training samples’ contributions by means
of the ordered weighted average (OWA) fuzzy rough set
model from [11].

1063-6706 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Using this approach, our proposed algorithm can better ad-
dress the imbalanced data distributions.

To evaluate the quality of our model, we have carried out an
extensive experimental analysis on a collection of 102 imbal-
anced datasets with different imbalance ratios (IR), originating
from the UCI repository. In the experiments, we have compared
our algorithm with the original FRNN proposal to show that it
is better positioned to deal with the class imbalance. In order to
demonstrate the importance of differentiating the weight vectors
for the positive and negative class, we have considered a version
of IFROWANN in which equal weight vectors are assigned to
each class. This has shown to seriously weaken the performance
of the algorithm. Finally, we have compared IFROWANN with
a set of 13 state-of-the-art methods specifically designed for im-
balanced classification. To assess the classification performance,
we have used the well-known area under the curve metric, and
the significance of the results has been supported by the proper
statistical analysis.

The remainder of this paper is organized as follows. In
Section II, we provide an introduction to the imbalanced clas-
sification problem, including an overview of the state-of-the-art
methods for solving it, and a discussion of its evaluation. In
Section III, we recall the standard FRNN algorithm. In Section
IV, we introduce the IFROWANN algorithm and outline the
proposed weighting strategies to deal with imbalanced data. In
Section V, we discuss the setup of the experimental study, in-
cluding a description of the benchmark datasets, the algorithms
used for comparison along with their parameters, and the statis-
tical tests used for performance comparison. In Section VI, we
present and discuss the results. In Section VII, we draw some
conclusions about the study and outline future work.

II. IMBALANCED CLASSIFICATION PROBLEMS

A. Two-Class Imbalanced Classification: Models
and Evaluation

The class imbalance problem is growing in importance and
has been identified as one of the ten main challenges of data
mining [48]. The two-class version of this problem is formally
described below.

We consider a set of data samples U , characterized by their
values for the set A = {a1 , . . . , am} of attributes. Moreover,
U = P ∪ N , where P represents the positive class, and N rep-
resents the negative class. We denote p = |P |, n = |N |, and
t = |U | = p + n. The IR is then defined as IR = n

p .
The imbalanced classification problem can be tackled using

four main types of solutions:
1) Sampling (solutions at the data level) [4], [7], [8], [22]:

This kind of solution consists of balancing the class distri-
bution by means of a preprocessing strategy. Techniques
at data level are divided in three groups:

a) Undersampling methods: Create a subset of the orig-
inal dataset by eliminating some of the examples of
the majority class.

b) Oversampling methods: Create a superset of the
original dataset by replicating some of the exam-
ples of the minority class or creating new minority

instances, for example by interpolation of original
instances.

c) Hybrid methods: Combine the two previous meth-
ods by reducing the size of the majority class and
increasing the number of minority elements.

An important advantage of the data level approaches is
that their use is independent from the classifier selected
[38].

2) Design of specific algorithms (solutions at the algorithmic
level) [5], [10], [31] : In this case, a traditional classifier
is adapted to deal directly with the imbalance between
the classes, for example, modifying the cost per class [26]
or adjusting the probability estimation in the leaves of a
decision tree to favor the positive class [46].

3) Cost-sensitive solutions [14], [42], [50], [51] : These kind
of methods incorporate solutions at data level, at algorith-
mic level, or at both levels together, that try to minimize
higher cost errors. Let C (+,−) denote the cost of mis-
classifying a positive (minority class) instance as a nega-
tive (majority class) instance and C (−,+) the cost of the
inverse case. We impose C (+,−) > C (−,+), i.e., the
cost of misclassifying a positive instance should be higher
than the cost of misclassifying a negative one.

4) Ensemble solutions [20] : Ensemble techniques for im-
balanced classification usually consist of a combination
of an ensemble learning algorithm and one of the tech-
niques above, specifically, data level and cost-sensitive.
Through the addition of a data level approach to the en-
semble learning algorithm, the new hybrid method usually
preprocesses the data before training each classifier. On
the other hand, instead of modifying the base classifier in
order to accept costs in the learning process, cost-sensitive
ensembles guide the cost minimization via the ensemble
learning algorithm.

Next, we review some high-quality proposals that will be used
in our experimental study.

1) Synthetic minority oversampling technique (SMOTE) [7]:
An oversampling method that creates new minority class
examples by interpolating between minority class exam-
ples and their nearest neighbors.

2) SMOTE-ENN [4] : This hybrid method applies the edited
nearest neighbor (ENN) technique to remove examples
from both classes after SMOTE has been applied. In par-
ticular, any example that is misclassified by its three near-
est neighbors is removed from the training set.

3) SMOTE-RSB∗ [38] : This is another hybrid data level
method. It first applies SMOTE to introduce new syn-
thetic minority class instances to the training set and then
removes synthetic instances that do not belong to the lower
approximation of its class, computed using rough set the-
ory [36]. This process is repeated until the training set is
balanced.

4) Hellinger distance decision trees (HDDT) [10] : This al-
gorithm level method is a decision tree technique that
uses the Hellinger distance as the splitting criterion. It
yields very good results for imbalanced data when used
in a bagging (ensemble) configuration, which is the setup
considered in this paper.
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TABLE I
CONFUSION MATRIX OBTAINED AFTER CLASSIFICATION

OF A TWO-CLASS DATASET

Actual/Predicted Positive Negative

Positive TP FN
Negative FP TN

5) Cost-sensitive C4.5 decision tree (CS-C4.5) [42] : This
method builds decision trees that try to minimize the num-
ber of high cost errors and, as a consequence, leads to the
minimization of the total misclassification costs in most
cases. The method changes the class distribution such
that the induced tree is in favor of the class with high
weight/cost and is less likely to commit errors with high
cost.

6) Cost-sensitive support vector machine (CS-SVM) [45] :
This method is a modification of the soft-margin support
vector machine [43]. It biases SVM in a way that will
push the boundary away from the positive instances using
different error costs for the positive and negative classes.

7) EUSBOOST [21] : An ensemble method that uses Evo-
lutionary UnderSampling (EUS, [25]) guided boosting.
EUS arises from the application of evolutionary prototype
selection algorithms to imbalanced domains. In EUS, each
chromosome is a binary vector representing the presence
or absence of instances in the dataset. This method re-
duces the search space by considering only the majority
class instances; hence, all the minority class instances are
always introduced in the new dataset. The fitness function
tries to balance between the minority class and majority
class instances and includes a diversity mechanism among
classifiers.

Next, we will discuss the evaluation of machine-learning al-
gorithms in imbalanced domains. Consider a two-class problem.
For any given classifier, a correctly classified positive instance
is called a true positive (TP). Similarly, a true negative (TN) is
a negative instance that was correctly classified as negative. In
the remaining cases, a positive instance was either misclassified
as negative, a false negative (FN), or a negative instance was
wrongly predicted as positive, a false positive (FP). The confu-
sion matrix, shown in Table I, presents a numerical summary of
this information, showing the number of instances in each case.

For classical domains, the performance is typically evaluated
using predictive accuracy (acc), defined by

acc =
TP + TN

TN + TN + FP + FN
.

However, this is not appropriate when the data are imbalanced
or when the costs of different errors vary markedly [9]. Indeed,
accuracy can take on misleadingly high values. As an example,
assume that the IR of the dataset is 9, meaning that 90% of
the elements belong to the negative class. When we classify
all instances as negative, we obtain a predictive accuracy of
90%. Even though this is a high value, the classifier has still
misclassified the entire positive class, which renders it quite
useless.

A more appropriate way to measure the performance of clas-
sification over imbalanced datasets are the receiver operating
characteristic (ROC) graphs [6]. These graphs visualize the
tradeoff between the true positive rate (TPR) and false posi-
tive rate (FPR), defined as

TPR =
TP

TP + FN
and FPR =

FP
FP + TN

when the classifier is treated as a probabilistic classifier, that is,
one which calculates the probability that the element under con-
sideration belongs to the given class. By varying the threshold
for belonging to the positive class, different points of the ROC
curve are generated.

The area under the ROC curve (AUC) [30] then provides a
single-number summary for the performance of learning algo-
rithms. The AUC can be interpreted as the probability that the
classifier assigns a lower probability of belonging to the positive
class to a randomly chosen negative instance than to a randomly
chosen positive instance [16]. There are many ways to compute
the AUC. In this paper, we use the definition given by Fawcett
[16], who proposed an algorithm that, instead of collecting ROC
points, adds successive areas of trapezoids to the computed AUC
value.

III. FUZZY-ROUGH NEAREST NEIGHBOR ALGORITHM

In this section, we recall the FRNN classification algorithm
proposed in [32]. We apply it directly to the specific case of
two-class imbalanced data. In order to predict the class of a
new test instance x, the FRNN algorithm computes the sum
of the memberships of x to the fuzzy-rough lower and upper
approximation of each class and assigns the instance to the
class for which this sum is higher. More precisely, let I be an
implicator,1 T a t-norm, and R a fuzzy relation that represents
approximate indiscernibility between instances. The member-
ship degrees P (x) and N(x) of x to the lower approximation
of P and N are defined by, respectively,

P (x) = min
y∈U

I (R(x, y), P (y)) (1)

N(x) = min
y∈U

I (R(x, y), N(y)). (2)

The value P (x) can be interpreted as the degree to which objects
outside P (thus, in N ) which are approximately indiscernible
from x do not exist. A similar interpretation can be given to the
value N(x).

On the other hand, the membership degrees P (x) and N(x)
of x to the upper approximation of P and N under R are defined
by, respectively,

P (x) = max
y∈U

T (R(x, y), P (y)) (3)

N(x) = max
y∈U

T (R(x, y), N(y)) (4)

where P (x) can be interpreted as the degree to which another
element in P close to x exists, and similarly for N(x).

1An implicator I is a [0, 1]2 → [0, 1] mapping that is decreasing in its first
argument and increasing in its second argument, and that satisfies I (0, 0) =
I (0, 1) = I (1, 1) = 1, and I (1, 0) = 0.
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In this paper, we consider I and T defined by I (a, b) =
max(1 − a, b) and T (a, b) = min(a, b), for a, b in [0, 1]. It can
be verified that in this case, (1)–(4) can be simplified to

P (x) = min
y∈N

1 − R(x, y) (5)

N(x) = min
y∈P

1 − R(x, y) (6)

P (x) = max
y∈P

R(x, y) (7)

N(x) = max
y∈N

R(x, y). (8)

In other words, P (x) is determined by the similarity to the
closest negative (majority) sample, and N(x) is determined by
the similarity to the closest positive (minority) sample. On the
other hand, to obtain P (x) and N(x), we look for the most
similar element to x belonging to the positive, respectively,
negative class. In addition, the lower and upper approximations
are clearly related: P (x) = 1 − N(x) and N(x) = 1 − P (x).
The FRNN algorithm then determines the classification of the
test instance x as follows. We compute

μP (x) =
P (x) + P (x)

2
=

P (x) + 1 − N(x)
2

(9)

μN (x) =
N(x) + N(x)

2
=

N(x) + 1 − P (x)
2

(10)

where x is classified to the positive class if μP (x) ≥ μN (x);
otherwise, it is classified to the negative class.

The main drawback of this method for imbalanced classifi-
cation is that it treats all classes symmetrically, not making a
distinction between majority and minority instances. The next
section introduces a new strategy to deal with imbalanced data
based on FRNN.

IV. FUZZY-ROUGH ORDERED WEIGHTED AVERAGE APPROACH

TO IMBALANCED CLASSIFICATION

As discussed in the previous section, FRNN treats the positive
and negative class in a completely symmetric way and, hence,
makes no provisions for the class imbalance. On the other hand,
the classifications of the FRNN algorithm are completely deter-
mined by the closest samples in either class, which may be too
naive a strategy, especially if noise is present in the data.

To deal with these problems, in this section, we introduce the
IFROWANN classifier. Its general format is introduced in Sec-
tion IV-A, while in Section IV-B, we propose different weighting
strategies for the positive and the negative class, and in Section
IV-C, we consider different strategies to model the indiscerni-
bility relation.

A. Imbalanced Fuzzy-Rough Ordered Weighted Average
Nearest Neighbor Algorithm

In order to take into account not just the closest samples for a
test instance, we rely on OWA operators [47], which are recalled
first. Given a sequence A of t real values A = 〈a1 , . . . , at〉, and
a weight vector W = 〈w1 , . . . , wt〉 such that wi ∈ [0, 1] and

∑t
i=1 wi = 1, the OWA aggregation of A by W is given by

OWAW (A) =
t∑

i=1

wibi

where bi = aj if aj is the ith largest value in A. For instance, if
A = 〈0.3, 0.1, 0.2〉, and W = 〈0.3, 0.2, 0.5〉, then

OWAW (A) = 0.3 ∗ 0.3 + 0.2 ∗ 0.2 + 0.5 ∗ 0.1 = 0.18.

The OWA operator has the minimum and the maximum operator
as a special case. Indeed, if W = 〈0, 0, . . . , 1〉, then OWAW (A)
will return the minimum value in A, while W = 〈1, 0, . . . , 〉will
cause OWAW (A) to be the maximum of A. Furthermore, we
can consider OWA weight vectors to model a wide variety of
aggregation strategies different from min and max and apply
them in (1)–(4).

In general, given OWA weight vectors Wl
P and Wl

N of length
t = |U |, an implicator I and a fuzzy relation R, we can define
the membership of a test instance x to the Wl

P -lower approxi-
mation of P and to the Wl

N -lower approximation of N by

PW l
P
(x) = OWAW l

P

y∈U

〈I (R(x, y), P (y))〉 (11)

NW l
N

(x) = OWAW l
N

y∈U

〈I (R(x, y), N(y))〉. (12)

On the other hand, given OWA weight vectors Wu
P and Wu

N of
length t = |U | and a t-norm T , we can define the membership
of x to the Wu

P -upper approximation of P and to the Wu
N -upper

approximation of N by

PW u
P
(x) = OWAW u

P

y∈U

〈T (R(x, y), P (y))〉 (13)

NW u
N

(x) = OWAW u
N

y∈U

〈T (R(x, y), N(y))〉. (14)

The following proposition shows that, similar to Section III, a
relationship between the lower and upper approximation can be
established when specific conditions are imposed on the logical
connectives and weight vectors.

Proposition 1: Let I and T be defined by I (a, b) =
max(1 − a, b) and T (a, b) = min(a, b), for a, b in [0, 1]. Addi-
tionally, we impose the conditions (Wu

P )i = (Wl
N )t−i+1 and

(Wu
N )i = (Wl

P )t−i+1 , for i = 1, . . . , t. Under these restric-
tions, PW u

P
(x) = 1 − NW l

N
(x) and NW u

N
(x) = 1 − PW l

P
(x),

for any x in U .
Proof: We rename the elements of U such that U =

{y1 , . . . , yt}, where

min(R(x, yi), P (yi)) ≥ min(R(x, yj ), P (yj ))

for i ≥ j. Let x ∈ U , it holds that

PW u
P
(x) = OWAW u

P

y∈U

〈T (R(x, y), P (y))〉

=
t∑

i=1

(Wu
P )i min(R(x, yi), P (yi))

=
t∑

i=1

(Wl
N )t−i+1 min(R(x, yi), 1 − N(yi))
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=
t∑

i=1

(Wl
N )t−i+1(1 − max(1 − R(x, yi), N(yi)))

= 1 −
t∑

i=1

(Wl
N )iI (R(x, yt−i+1), N(yt−i+1))

= 1 − NW l
N

(x).

Analogously, we can establish that NW u
N

(x) = 1 − PW l
P
(x).�

Assuming the conditions of Proposition 1, the IFROWANN
algorithm then determines the classification of the test instance
x by computing

μP (x) =
PW l

P
(x) + PW u

P
(x)

2
=

PW l
P
(x) + 1 − NW l

N
(x)

2
(15)

μN (x) =
NW l

N
(x) + NW u

N
(x)

2
=

NW l
N

(x) + 1 − PW l
P
(x)

2
.

(16)

Similarly as in FRNN, x is classified to the positive class if
μP (x) ≥ μN (x); otherwise, it is classified to the negative class.

B. Ordered Weighted Average Weight Vectors for
Imbalanced Classification

A crucial factor in the application of IFROWANN is the
choice of the OWA weight vectors in (11)–(14). Because of
the relationship we assume between the lower and upper ap-
proximation, in this section we only focus on the former. In
particular, we design weight vectors that provide flexible gen-
eralizations of the minimum operator and at the same time take
into account the imbalance present in the data.

First note that, under our assumptions, I (R(x, y), P (y)) =
1 as soon as P (y) = 1, in other words, when sample y is posi-
tive. Similarly, I (R(x, y), N(y)) = 1 always holds when y is
negative. It can be argued that these values should not be taken
into account when computing the lower approximation; indeed,
the commonsense interpretation of rough sets [40] states that an
instance x belongs to the lower approximation of a class to the
extent that it can be discerned (separated) from instances be-
longing to different classes; thus, instances from x’s own class
should not influence the instance’s membership to the lower
approximation.

In the context of the IFROWANN approach, we can imple-
ment this idea by assigning a weight of 0 to the corresponding
positions in the OWA weight vectors. In particular, the first p
positions in Wl

P can be put to 0, taking into account that they
correspond to the highest values of I (R(x, y), P (y)), and thus
to the p positive samples in the training data.

The remaining n positions in the weight vector Wl
P corre-

spond to the instances in N . For these instances, the implica-
tion values equal I (R(x, y), P (y)) = max(1 − R(x, y), 0) =
1 − R(x, y). We consider two alternative strategies to construct
the weight vectors, both of which assign higher weights to the

smaller implication values:

Wl1
P =

〈

0, . . . , 0,
2

n(n + 1)
,

4
n(n + 1)

, . . . ,

2(n − 1)
n(n + 1)

,
2

n + 1

〉

(17)

Wl2
P =

〈

0, . . . , 0,
1

2n − 1
,

2
2n − 1

, . . . ,

2n−2

2n − 1
,

2n−1

2n − 1

〉

. (18)

The main difference between both vectors is that in the first
case, weights decrease less rapidly than in the second case and
are distributed more evenly among the instances. For instance,
if n = 5, then

Wl1
P =

〈

0, . . . , 0,
1
15

,
2
15

,
3
15

,
4
15

,
5
15

〉

(19)

Wl2
P =

〈

0, . . . , 0,
1
31

,
2
31

,
4
31

,
8
31

,
16
31

〉

. (20)

In a completely analogous way, we can obtain two versions
of the weight vectors Wl1

N , where the first n positions are given
a value of 0:

Wl1
N =

〈

0, . . . , 0,
2

p(p + 1)
,

4
p(p + 1)

, . . . ,

2(p − 1)
p(p + 1)

,
2

p + 1

〉

(21)

Wl2
N =

〈

0, . . . , 0,
1

2p − 1
,

2
2p − 1

, . . . ,

2p−2

2p − 1
,

2p−1

2p − 1

〉

. (22)

Since typically p is a lot smaller than n, the obtained weight
vectors for the positive and the negative classes will be quite
different. However, for the second weighting strategy, we need
to take into account that in practice, even for fairly small values
of n and p, Wl2

P and Wl2
N soon approximate the fixed weight

vector

W =
〈

. . . ,
1
32

,
1
16

,
1
8
,
1
4
,
1
2

〉

. (23)

For this reason, in our experiments, we will also consider mixed
approaches, where, e.g., Wl1

P and Wl2
N are used in combination.

On the other hand, when n gets large, all the weights in
Wl1

P become very small. Consequently, a similar phenomenon
occurs as for the k nearest neighbor (kNN) classifier [12] when
the number k of considered neighbors gets very high, i.e., the
individual impact of instances gets diluted, and the classification
performance drops sharply. In order to mitigate this effect, we
consider the following variant of Wl1

P . Given 0 ≤ γ ≤ 1,

Wl1 ,γ
P =

〈

0, . . . , 0,
2

r(r + 1)
,

4
r(r + 1)

, . . . ,

2(r − 1)
r(r + 1)

,
2

r + 1

〉

(24)
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TABLE II
DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTAL EVALUATION

Dataset IR Inst Attr Dataset IR Inst Attr

glass1 1.82 214 9 ecoli4 15.8 336 7
ecoli-0vs1 1.86 220 9 page-blocks-1-3vs4 15.86 472 10
wisconsinImb 1.86 683 7 abalone9-18 16.4 731 8
iris0 2 150 4 glass-0-1-6vs5 19.44 184 9
glass0 2.06 214 9 shuttle-c2-vs-c4 20.5 129 9
yeast1 2.46 1484 8 cleveland-4 21.85 297 13
habermanImb 2.78 306 3 shuttle-6vs2-3 22 230 9
vehicle2 2.88 846 18 yeast-1-4-5-8vs7 22.1 693 8
vehicle1 2.9 846 18 ionosphere-bredvsg 22.5 235 33
vehicle3 2.99 846 18 glass5 22.78 214 9
glass-0-1-2-3vs4-5-6 3.2 214 9 yeast-2vs8 23.1 482 8
vehicle0 3.25 846 18 wdbc-MredBvsB 23.8 372 30
ecoli1 3.36 336 7 texture-2redvs3-4 23.81 1042 40
appendicitisImb 4.05 106 7 yeast4 28.1 1484 8
new-thyroid1 5.14 215 5 winequalityred-4 29.17 1599 11
new-thyroid2 5.14 215 5 kddcup-guess-passwdvssatan 29.98 1642 41
ecoli2 5.46 336 7 yeast-1-2-8-9vs7 30.57 947 8
segment0 6.02 2308 19 abalone-3vs11 32.47 502 8
glass6 6.38 214 9 winequalitywhite-9vs4 32.6 168 77
yeast3 8.1 1484 8 yeast5 32.73 1484 8
ecoli3 8.6 336 7 winequalityred-8vs6 35.44 656 11
page-blocks0 8.79 5472 10 ionosphere-bredBvsg 37.5 231 33
ecoli-0-3-4vs5 9 200 7 ecoli-0-1-3-7vs2-6 39.14 281 7
ecoli-0-6-7vs3-5 9.09 222 7 abalone-17vs7-8-9-10 39.31 2338 8
yeast-2vs4 9.1 515 7 abalone-21vs8 40.5 581 8
ecoli-0-2-3-4vs5 9.1 202 7 yeast6 41.4 1484 8
glass-0-1-5vs2 9.12 172 9 segment-7redvs2-4-5-6 42.58 1351 19
yeast-0-3-5-9vs7-8 9.12 506 8 winequalitywhite-3vs7 44 900 11
yeast-0-2-5-6vs3-7-8-9 9.14 1004 8 wdbc-MredvsB 44.63 365 30
yeast-0-2-5-7-9vs3-6-8 9.14 1004 8 segment-5redvs1-2-3 45 1012 19
ecoli-0-4-6vs5 9.15 203 6 winequalityred-8vs6-7 46.5 855 11
ecoli-0-1vs2-3-5 9.17 244 7 phoneme-1redvs0red 46.98 2543 5
ecoli-0-2-6-7vs3-5 9.18 224 7 texture-6redvs7-8 47.62 1021 40
glass-0-4vs5 9.22 92 9 kddcup-landvsportsweep 49.52 1061 41
ecoli-0-3-4-6vs5 9.25 205 7 abalone-19vs10-11-12 49.69 1622 8
ecoli-0-3-4-7vs5-6 9.28 257 7 magic-hredvsgred 54.1 2645 10
yeast-0-5-6-7-9vs4 9.35 528 8 winequalitywhite-3-9vs5 58.28 1482 11
ecoli-0-6-7vs5 10 220 6 shuttle-2vs5 66.67 3316 9
glass-0-1-6vs2 10.29 192 9 winequalityred-3vs5 68.1 691 11
ecoli-0-1-4-7vs2-3-5-6 10.59 336 7 phoneme-1redBvs0redB 69.7 2333 5
ecoli-0-1vs5 11 240 6 texture-12redvs13-14 71.43 1014 40
glass-0-6vs5 11 108 9 abalone-20vs8-9-10 72.69 1916 8
glass-0-1-4-6vs2 11.06 205 9 kddcup-bufferoverowvsback 73.43 2233 41
glass2 11.59 214 9 kddcup-landvssatan 75.67 1610 41
ecoli-0-1-4-7vs5-6 12.28 332 7 shuttle-2vs1red 81.63 4049 9
cleveland-0vs4 12.31 173 13 segment-6redvs3-4-5 82.5 1002 19
ecoli-0-1-4-6vs5 13 280 6 shuttle-6-7vs1red 86.96 2023 9
movement-libras-1 13 336 90 magic-hredBvsgredB 88 2403 10
shuttle-c0-vs-c4 13.87 1829 9 texture-7redvs2-3-4-6 95.24 2021 40
yeast-1vs7 14.3 459 7 kddcup-rootkit-imapvsback 100.14 2225 41
glass4 15.46 214 9 abalone19 129.44 4174 8

where r = 
p + γ(n − p)�, and the first t − r values of the
vector are equal to 0. Clearly, Wl1 ,0

P = Wl1
N , and Wl1 ,1

P = Wl1
P .

Hence, the number r of nonzero weights in Wl1 ,γ
P will always

be between p and n. In our experiments, we will use a small
value of γ, e.g., γ = 0.1, to limit the number of instances which
receive strictly positive weights.

C. Indiscernibility Relation

Apart from the OWA weight vectors, we also need to make
a choice for the fuzzy relation R. In order to determine the
approximate indiscernibility between two instances x and y

based on the set A of attributes, in this paper we assume the
following definitions. Given a quantitative (i.e., real) attribute
a,

Ra(x, y) = 1 − |a(x) − a(y)|
range(a)

(25)

while for a nominal attribute a,

Ra(x, y) =
{

1, if a(x) = a(y)
0, otherwise.

(26)

We establish the range of a feature based on the training data.
In case a test sample has a value for a feature that lies outside
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TABLE III
PARAMETERS OF THE STATE-OF-THE-ART METHODS FOR THE EXPERIMENTAL STUDY

Algorithm Parameters

SMOTE Number of Neighbors = 5, Type of SMOTE = both, Balancing = YES

Quantity of generated examples = 1, Distance Function = HVDM, Type of Interpolation = standard

SMOTE-ENN Number of Neighbors ENN = 3, Number of Neighbors SMOTE = 5, Type of SMOTE = both, Balancing = YES

Quantity of generated examples = 1, Distance Function (SMOTE) = HVDM, Distance Function (ENN) = Euclidean

SMOTE-RSB∗ Number of Neighbors = 5, Type of neighbors = Both, Balance = Yes, Smoting = 1

Type of Interpolation = standard, Cutoffini = 0.6, Cutoffinal = 0.9

kNN Distance Function = Euclidean

C4.5 pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2

SVM c = 1.0, Tolerance Parameter = 0.001, epsilon = 1.0E-12, Kernel Type = polynomial

Normalized PolyKernel exponent = 1.0, Normalized PolyKernel use Lower Order = False

FitLogisticModels = TRUE, ConvertNominalAttributesToBinary = True, PreprocessType = Normalize

EUSBOOST pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2, Number of Classifiers = 10, Algorithm = ERUSBOOST

Train Method = NORESAMPLING, Quantity of balancing SMOTE = 50, IS Method = HammingEUB_M_GM

C4.5-CS pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2, minimumExpectedCost = TRUE

SVM-CS Kernel Type = polynomial, C = 100.0, eps = 0.001

degree = 1, gamma = 0.01, coef0 = 0.0, nu = 0.1, p = 1.0, shrinking = 1

HDDT + Bagging For Bagging: bagSizePercent = 100, calcOutOfBag = false, numIterations = 100

For HDDT: binarySplits = true, collapse = false, confidenceFactor = 0.25, minNumObj = 2, reducedErrorPruning = false

saveInstanceData = false, subtreeRaising = true, unpruned = false, useLaplace = false

Fig. 1. Tuning of the k parameter for kNN with SMOTE, SMOTE-RSB∗, and SMOTE-ENN.

this range, we dynamically change the range to take into account
the extreme value.

We then consider the three following alternatives for defining
the fuzzy relation R:

RTL
(x, y) = TL (Ra1 (x, y), . . . , Ram

(x, y)) (27)

RMin(x, y) = min(Ra1 (x, y), · · · , Ram
(x, y)) (28)

RAv (x, y) =
Ra1 (x, y) + . . . + Ram

(x, y)
m

(29)

where the Łukasiewicz t-norm TL is defined by, for
u1 , u2 , . . . , um in [0, 1],
TL (u1 , u2 , · · · , um ) = max(u1 + u2 + . . . + um − m + 1, 0).

(30)
It can be easily checked that RTL

(x, y) ≤ RMin(x, y) ≤
RAv (x, y) always holds. In other words, RTL

provides a com-
paratively more conservative (lower) estimate for the similarity
between x and y, while RAv provides a more liberal (higher)
one, and RMin is in between the two. In the next sections, we
will evaluate the impact of this choice on the results of our
experiments.
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TABLE IV
MEAN AUC FOR IFROWANN VARIANTS OVER ALL DATASETS

Algorithm AUC Algorithm AUC Algorithm AUC

TL-W1 0.8943 AV-W1 0.9098 MIN-W1 0.8908
TL-W2 0.8802 AV-W2 0.9094 MIN-W2 0.8908
TL-W3 0.8893 AV-W3 0.8990 MIN-W3 0.8813
TL-W4 0.8998 AV-W4 0.9181 MIN-W4 0.9030
TL-W5 0.8928 AV-W5 0.9122 MIN-W5 0.8955
TL-W6 0.9054 AV-W6 0.9256 MIN-W6 0.9071

The values marked in underline (values higher than 0.91) are taken into
account in the statistical analysis.

Fig. 2. Sensitivity analysis for the parameter γ in the weighting strategies W5
and W6 , evaluated over all datasets. (a) IFROWANN-W5 . (b) IFROWANN-W6 .

V. EXPERIMENTAL SETUP

In this section, we describe the experimental framework used
to validate our proposal, including the benchmark datasets, the
particular configurations considered for IFROWANN and for
the baseline and state-of-the-art methods, and the statistical tests
used in order to carry out the performance comparison.

A. Datasets

We consider 102 datasets with different IRs (between 1.82
and 129.44) to evaluate our proposal. They originate from the
UCI repository [3] and were obtained by modifying multiple
class datasets into two-class imbalanced problems. To create a
new two-class dataset, we take one or more small classes versus
one or more of the remaining classes. The name of the resulting
dataset references the original classes used in the construction,
for instance: in ecoli-0-1-3-7vs2-6 the first class consists of
class0, class1, class3 and class7 from the original ecoli dataset,
while the second is composed of class2 and class6. The charac-

teristics of these datasets can be found in Table II, showing the
IR, the number of instances (Inst), and the number of attributes
(Attr) for each of them.

Apart from considering the dataset collection as a whole, in
our experimental study we have also considered three subsets of
the collection based on their IR. The purpose of this division is
to evaluate the behavior of the algorithms at different imbalance
levels.

1) IR < 9 (low imbalance): This group contains 22 datasets,
all with IR lower than 9.

2) IR ≥ 9 (high imbalance): This group contains 80
datasets, all with IR at least 9.

3) IR ≥ 33 (very high imbalance): This group contains 31
datasets, all with IR at least 33. This is a subset of the
collection considered in the second case.

Furthermore, each dataset is partitioned in order to perform
a fivefold cross validation. The partitions were built in such a
way that the quantity of elements in each class remains uniform
[17]. The datasets are available online as part of the KEEL data
set repository [1], [2].2

B. Algorithms Analyzed in the Experimental Study

1) Imbalanced Fuzzy Rough Ordered Weighted Average
Nearest Neighbor: Based on the proposals in Section IV-B, we
consider the following six configurations for the IFROWANN
weight vectors:

1) W1 = 〈Wl1
P ,W l1

N 〉;
2) W2 = 〈Wl1

P ,W l2
N 〉;

3) W3 = 〈Wl2
P ,W l1

N 〉;
4) W4 = 〈Wl2

P ,W l2
N 〉;

5) W5 = 〈Wl1 ,γ
P ,W l1

N 〉 with γ = 0.1;
6) W6 = 〈Wl1 ,γ

P ,W l2
N 〉 with γ = 0.1.

In order to check the robustness of the parameter γ in the last
two configurations, we will also perform a sensitivity analysis
with γ taking values between 0 and 1.

Each of these weight vectors will be combined with the three
indiscernibility relations considered in Section IV-C. The re-
sulting 18 combinations will be denoted TL-Wi , MIN-Wi and
AV-Wi , with i = 1, . . . , 6.

2) Baseline Methods—Fuzzy Rough Nearest Neighbor and
Imbalanced Fuzzy Rough Ordered Weighted Average Nearest
Neighbor Using Equal Weight Vectors: Apart from comparing
IFROWANN with the original FRNN algorithm, we also want
to demonstrate the importance of using different weight vec-
tors for the positive and the negative class. For this reason,
we will consider a particular configuration of IFROWANN, de-
noted W7 = 〈Wl,W l〉, in which equal weight vectors are used
for both classes:

Wl =
〈

2
(n + p)(n + p + 1)

,
4

(n + p)(n + p + 1)
, . . . ,

2(n + p − 1)
(n + p)(n + p + 1)

,
2

n + p + 1

〉

. (31)

2See http://www.keel.es/data sets.php.
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TABLE V
AVERAGE FRIEDMAN RANKINGS AND ADJUSTED p-VALUES USING HOLM’S

POSTHOC PROCEDURE FOR ALL DATASETS, USING AV-W6
AS THE CONTROL ALGORITHM

Algorithm Average Friedman ranking Adjusted p-value

AV-W6 1.7549 -
AV-W4 2.0196 0.058707
AV-W5 2.2255 0.001555

TABLE VI
MEAN AUC FOR IFROWANN VARIANTS FOR DIFFERENT IR LEVELS

Method <9 ≥9 ≥33

TL-W1 0.9186 0.8877 0.8845
TL-W2 0.9076 0.8727 0.8424
TL-W3 0.8935 0.8882 0.8941
TL-W4 0.9180 0.8948 0.8959
TL-W5 0.9163 0.8863 0.8925
TL-W6 0.9148 0.9028 0.8989
AV-W1 0.9014 0.9121 0.9023
AV-W2 0.9029 0.9112 0.8938
AV-W3 0.8900 0.9014 0.8938
AV-W4 0.9232 0.9167 0.9073
AV-W5 0.9068 0.9136 0.9030
AV-W6 0.9139 0.9288 0.9166
MIN-W1 0.8844 0.8961 0.9062
MIN-W2 0.8809 0.8935 0.8990
MIN-W3 0.8713 0.8841 0.8975
MIN-W4 0.9101 0.9010 0.9156
MIN-W5 0.8877 0.8977 0.9085
MIN-W6 0.8925 0.9111 0.9230

The values marked in underline (values
higher than 0.91) are taken into account in
the statistical analysis.

Each of the above baseline configurations will be combined with
the same indiscernibility relations considered above. We denote
the resulting methods TL-FRNN, MIN-FRNN, AV-FRNN, TL-
W7 , MIN-W7 , and AV-W7 .

3) State-of-the-Art Methods: As discussed in Section II-A,
we will consider the following imbalanced learning methods to
compare our method with:

1) SMOTE;
2) SMOTE-ENN;
3) SMOTE-RSB∗;
4) CS-C4.5;
5) CS-SVM;
6) EUSBOOST;
7) HDDT+Bagging.
The first three methods are preprocessing techniques; there-

fore, they need to be combined with a base classifier. We chose
three wellknown classifiers, representing lazy learners, decision
tree-based methods, and support vector machines, respectively:

1) kNN [12];
2) C4.5 [37];
3) SVM [43].
The parameters of all the resulting 13 proposals which were

used in our experimentation are described in Table III. For de-
tailed explanation of these parameters, we refer to the corre-

TABLE VII
AVERAGE FRIEDMAN RANKINGS AND ADJUSTED p-VALUES USING HOLM’S

POSTHOC PROCEDURE FOR LOW IMBALANCE DATA SETS, USING AV-W4
AS THE CONTROL ALGORITHM

Algorithm Average Friedman ranking Adjusted p-value

AV-W4 2.9545 -
TL-W4 3.3864 0.507350
AV-W6 4.0455 0.193227
TL-W6 4.1591 0.193227
TL-W1 4.2500 0.186845
TL-W5 4.3864 0.139650
MIN-W4 4.8182 0.025319

TABLE VIII
AVERAGE FRIEDMAN RANKINGS AND ADJUSTED p-VALUES USING HOLM’S

POSTHOC PROCEDURE FOR HIGH IMBALANCE DATA SETS, USING AV-W6
AS THE CONTROL ALGORITHM

Algorithm Average Friedman ranking Adjusted p-value

AV-W6 2.1000 -
AV-W5 3.0187 0.000238
AV-W4 3.0875 0.000156
AV-W2 3.3312 0.000003
AV-W1 3.4625 0.000000

sponding articles. For the kNN method, in order to set the num-
ber of neighbors optimally, we used the best value of k for each
dataset, obtained by trying all values between 1 and the total
number of training instances, with 100 equidistant steps. Fig. 1
shows this analysis, averaged over all datasets.

C. Statistical Tests for Performance Comparison

In order to compare the different algorithms appropriately,
we will conduct a statistical analysis using nonparametric tests
as suggested in the literature [13], [23], [24].

We first use Friedman’s aligned-ranks test [19] to detect sta-
tistical differences among a set of algorithms. The Friedman test
computes the average aligned-ranks of each algorithm, obtained
by computing the difference between the performance of the al-
gorithm and the mean performance of all algorithms for each
dataset. The lower the average rank, the better the corresponding
algorithm.

Then, if significant differences are found by the Friedman test,
we check if the control algorithm (the one obtaining the smallest
rank) is significantly better than the others using Holm’s posthoc
test [29]. The posthoc procedure allows us to decide whether
a hypothesis of comparison can be rejected at a specified level
of significance α. In this paper, we set α = 0.05. In practice,
it is very interesting to compute the adjusted p-value, which
represents the lowest level of significance of a hypothesis that
results in a rejection. In this manner, we can find out whether
two algorithms are significantly different and how different they
are.
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TABLE IX
AVERAGE FRIEDMAN RANKINGS FOR VERY HIGH IMBALANCE DATASETS

Algorithm Average Friedman ranking

AV-W6 1.8871
MIN-W6 2.0161
MIN-W4 2.0968

The Friedman test does not discover sig-
nificant differences; therefore, Holm’s test
is not performed.

TABLE X
MEAN AUC FOR BASELINE METHODS AND BEST IFROWANN VARIANTS

OVER ALL DATASETS

Method AUC

TL-W7 0.8288
AV-W7 0.7798
MIN-W7 0.7754
TL-FRNN 0.8905
AV-FRNN 0.9083
MIN-FRNN 0.8925
AV-W4 0.9181
AV-W5 0.9122
AV-W6 0.9256

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our experimental
analysis.3 In Section VI-A, we first compare the 18 variants of
IFROWANN over the entire collection of 102 datasets. Next,
in Section VI-B, we provide a detailed analysis for different
IR levels (low IR, high IR, and very high IR). Section VI-C
compares our proposal with the baseline methods FRNN and
W7 . Furthermore, in Section VI-D, we compare the algorithms
that perform best in the first analysis with the state-of-the-art
methods for imbalanced classification. Finally, Section VI-E
provides a graphical analysis.

A. Comparative Analysis Between Imbalanced Fuzzy Rough
Ordered Weighted Average Nearest Neighbor Variants Over
All Datasets

Table IV shows the mean AUC obtained for 18 variants of
IFROWANN. We can see that AV-W6 obtains the highest average
AUC. There are also some quite noticeable differences between
the results obtained with each indiscernibility relation (TL, AV,
MIN). The best general results are obtained with AV, while there
is no great performance difference between TL and MIN.

Next, we can also notice several differences between the
weighting strategies, which are summarized below:

1) Exponentially decreasing weights (W4) outperform lin-
early decreasing weights (W1).

2) Mixing different weighting strategies (W2 and W3) gener-
ally lowers the results compared with W1 , and, thus, also
compared with W4 .

3) Varying W1 to only weigh a fraction of the negative in-
stances (W5) improves the results when using AV and

3The detailed results, per method and per dataset, are available online at the
website associated to this paper, http://sci2s.ugr.es/frowa-imbalanced/.

TABLE XI
AVERAGE FRIEDMAN RANKINGS AND ADJUSTED p-VALUES USING HOLM’S

POSTHOC PROCEDURE FOR ALL DATASETS, USING AV-W6
AS THE CONTROL ALGORITHM

Method Average Friedman ranking Adjusted p-value

AV-W6 2.6667 -
AV-W4 3.0147 0.364103
AV-W5 3.7157 0.012457
AV-FRNN 4.1765 0.000247
TL-FRNN 4.6618 0.000001
MIN-FRNN 5.1127 <0.000001
TL-W7 6.6324 <0.000001
AV-W7 7.3529 <0.000001
MIN-W7 7.6667 <0.000001

TABLE XII
MEAN AUC FOR STATE-OF-THE-ART METHODS AND THE BEST

IFROWANN VARIANTS

Method all <9 >9 >33

SMOTE-kNN 0.9096 0.9143 0.9083 0.8987
SMOTE-C4.5 0.8315 0.8604 0.8235 0.8050
SMOTE-SVM 0.9000 0.9051 0.8986 0.9133
SMOTE-ENN-kNN 0.8839 0.9093 0.8769 0.8320
SMOTE-ENN-C4.5 0.8412 0.8714 0.8329 0.8218
SMOTE-ENN-SVM 0.9005 0.9046 0.8994 0.9130
C4.5-CS 0.8263 0.8691 0.8146 0.8083
SVM-CS 0.8952 0.9137 0.8901 0.9032
EUSBOOST 0.9094 0.9263 0.9048 0.8977
SMOTE-RSB∗-kNN 0.9085 0.9119 0.9076 0.8975
SMOTE-RSB∗-C4.5 0.8266 0.8681 0.8152 0.8021
SMOTE-RSB∗-SVM 0.9001 0.9036 0.8991 0.9130
HDDT+Bagging 0.9158 0.9281 0.9124 0.9019
AV-W4 0.9181 0.9232 0.9167 0.9073
AV-W6 0.9256 0.9139 0.9288 0.9166

The values marked in underline (values higher than 0.91) are taken
into account in the statistical analysis.

TABLE XIII
AVERAGE FRIEDMAN RANKINGS AND ADJUSTED p-VALUES USING HOLM’S

POSTHOC PROCEDURE FOR ALL DATASETS, USING AV-W6
AS THE CONTROL ALGORITHM

Algorithm Average Friedman ranking Adjusted p-value

AV-W6 3.299 -
HDDT+Bagging 4.2941 0.003718
SMOTE-RSB∗-kNN 4.5147 0.000787
EUSBOOST 4.5833 0.000543
SMOTE-kNN 4.6275 0.000430
SMOTE-RSB∗-SVM 4.7304 0.000150
SMOTE-SVM 4.8186 0.000056
SMOTE-ENN-SVM 5.1324 0.000001

MIN; yet, they remain inferior to those of W4 . On the
other hand, this strategy slightly lowers the results when
TL is used. Fig. 2(a) shows the sensitivity analysis for
γ, obtained over all datasets when this parameter moves
between 0 and 1. As can be seen, the results are over-
all very stable. The TL curve shows a slight performance
drop for small values of γ, which might explain why re-
sults worse than W1 are obtained in this case.

4) Varying W4 to only a fraction of the negative instances
(W6) benefits the classification for high IR datasets, but
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TABLE XIV
AVERAGE FRIEDMAN RANKINGS FOR LOW IMBALANCE DATASETS

Algorithm Average Friedman ranking

AV-W4 3.9091
HDDT+Bagging 4.8636
SVM-CS 5.0227
EUSBOOST 5.2955
SMOTE-kNN 5.6136
SB-kNN 5.7500
SMOTE-SVM 5.8409
SB-SVM 6.0682
SMOTE-ENN-kNN 6.2727
SMOTE-ENN-SVM 6.3636

The Friedman test does not discover significant dif-
ferences; therefore, Holm’s test is not performed.

TABLE XV
AVERAGE FRIEDMAN RANKINGS AND ADJUSTED p-VALUES USING HOLM’S

POSTHOC PROCEDURE FOR HIGH IMBALANCE DATA SETS, USING AV-W6
AS THE CONTROL ALGORITHM

Algorithm Average Friedman ranking Adjusted p-value

AV-W6 2.0125 -
HDDT+Bagging 2.9812 0.000107
SMOTE-RSB∗-kNN 3.25 0.000001
EUSBOOST 3.2938 0.000001
SMOTE-kNN 3.4625 <0.000001

TABLE XVI
AVERAGE FRIEDMAN RANKINGS FOR VERY HIGH IMBALANCE DATASETS

Algorithm Average Friedman ranking

SMOTE-RSB∗-SVM 3.0968
SMOTE-SVM 3.2258
SMOTE-ENN-SVM 3.4516
SVM-CS 3.6613
HDDT+Bagging 3.7258
AV-W6 3.8387

The Friedman test does not discover significant differ-
ences; therefore, Holm’s test is not performed.

slightly deteriorates it for low IR datasets. The sensitivity
analysis in Fig. 2(b) shows that the best results are ob-
tained for low values of γ, which justifies our choice of
γ = 0.1.

We proceed with the statistical analysis of our results. In order
to reduce the number of variants considered in the test, and thus
increase its discriminatory power, we have selected only the
highest scoring proposals (AUC higher than 0.91). Such values
are marked in underline in Table IV.

The average ranks of the algorithms and the adjusted p-values
obtained by Holm’s posthoc procedure are shown in Table V.
The p-value computed by Friedman test is 0.003426, which
indicates that the hypothesis of equivalence can be rejected with
high confidence.

As we can observe, AV-W6 obtains the lowest ranking of the
algorithms used which turns it into the control method. The
adjusted p-values are low enough to reject the null hypothesis

with a high confidence level for AV-W4 and for AV-W5 . This
confirms that AV-W6 is indeed the best overall IFROWANN
configuration.

B. Comparative Analysis Between Imbalanced Fuzzy Rough
Ordered Weighted Average Nearest Neighbor Variants for
Different Levels of Data Imbalance

Table VI shows the mean AUC obtained for each method
and each block of datasets. Every row represents one variant
of IFROWANN, and the columns represent the dataset groups
based on IR. For every column, the highest AUC value is marked
in bold.

It can be noticed that for the high imbalance datasets (IR ≥ 9),
AV-W6 still obtains the highest average AUC. However, for low
imbalance datasets (IR < 9), AV-W4 reaches the highest value,
and for very high imbalance datasets (IR ≥ 33), the best variant
is MIN-W6 .

Next, we carry out a statistical analysis of our results for each
block of datasets. As before, we consider only the proposals
obtaining a mean AUC higher than 0.91. Such values are marked
in underline in Table VI.

1) Statistical Analysis for Low Imbalance Ratio Datasets:
For the low IR datasets, seven proposals are selected. Table VII
shows the average ranking obtained by the Friedman test. As
we can observe, the best ranking is obtained by AV-W4 . The
p-value computed by the Friedman Test is 0.082069, which is
low enough to conclude that there are significant differences
among the algorithms.

Based on the adjusted p-values, the Holm posthoc test allows
to conclude that the control method AV-W4 is significantly bet-
ter than MIN-W4 . The fairly low adjusted p-values for AV-W6
and TL-W6 also suggest that in this case W4 is indeed a better
weighting strategy than W6 .

2) Statistical Analysis for High Imbalance Ratio Datasets:
Table VIII shows the average ranking obtained by the Fried-
man test for the five proposals selected in this case. The p-value
computed by the Friedman test is approximately 0, which in-
dicates that the hypothesis of equivalence can be rejected with
high confidence. As we can observe, the best ranking is obtained
by AV-W6 which is used as the control algorithm. The adjusted
p-values are all very low, indicating that the method AV-W6
significantly outperforms the remaining methods when high IR
datasets are considered.

3) Statistical Analysis for Very High Imbalance Ratio
Datasets: Table IX shows the average ranking obtained by the
Friedman test for the three selected proposals. The Friedman
p-value in this case is 0.706965, which indicates that the hy-
pothesis of equivalence of the five considered methods can be
accepted. As we can observe, the best ranking is obtained by
AV-W6 .

C. Comparative Analysis of Imbalanced Fuzzy Rough Ordered
Weighted Average Nearest Neighbor and Baseline Methods

Table X shows the results over all 102 datasets of the basic
FRNN algorithm and the IFROWANN baseline configuration
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Fig. 3. AUC for all datasets, ordered according to their IR, for our best proposal (AV-W6 ) and the best algorithms from the state-of-the-art (SMOTE-RSB∗-kNN
and EUSBOOST).

W7 employing equal weight vectors for both classes, com-
bined with the three indiscernibility relations TL, AV, and MIN.
The table also shows the results obtained with the best three
IFROWANN variants AV-W4 , AV-W5 , and AV-W6 .

As can be seen in Table X, considering equal weight vectors
affects the results adversely, causing a drop in AUC of over
10%. This clearly shows the advantage of using different weight
vectors for the positive and negative class. On the other hand,
when the basic FRNN algorithm is used, we obtain fairly good
results. However, these results rank below those obtained with
the best IFROWANN variants.

We support the comparison with a statistical analysis in or-
der to demonstrate the superiority of our proposal. The average
ranks of the algorithms and the adjusted p-values obtained by
Holm’s posthoc procedure are shown in Table XI. The p-value
computed by the Friedman test is approximately 0, which in-
dicates that the hypothesis of equivalence can be rejected with
high confidence. From Table XI, we can conclude that the con-
trol algorithm AV-W6 obtains significantly better results than all
baseline methods.

D. Comparative Analysis With the State-of-the-Art Methods

The experimental study carried out in Section VI-A and VI-
B shows that the best two proposals are W4 in the case of
low IR datasets and W6 in the remaining cases. This section
compares these two methods with the state-of-the-art methods.
The mean AUC results for the different blocks are shown in
Table XII.

From these results, we can observe that W6 obtains the highest
AUC value in all blocks, except for low IR datasets for which
HDDT+Bagging gets the highest score. Again, we will subject
these results to a thorough statistical analysis. In this case, per
block we take into account the methods which obtain a mean
AUC of at least 0.9. These methods are marked in underline in
Table XII.

1) Statistical Analysis for All Datasets: Table XIII shows
the average ranking obtained by the Friedman test. The p-value

computed by the Friedman test is 0.000011, which indicates
that the hypothesis of equivalence can be rejected with high
confidence. As we can observe, the best ranking is obtained
by AV-W6 . Moreover, the adjusted p-values are all very low;
therefore, we may conclude that AV-W6 statistically outperforms
all of them.

2) Statistical Analysis for Low Imbalance Ratio Datasets:
In Table XIV, the results of applying the Friedman test are
shown. In this case, the associated p-value is 0.204917, which
is not low enough to reject the hypothesis of equivalence and
which leads us to conclude that there are no statistically signifi-
cant differences among the compared methods. Note that while
EUSBOOST obtains the highest AUC mean for this block, the
lowest Friedman rank is obtained by AV-W4 .

3) Statistical Analysis for High Imbalance Ratio Datasets:
The results, shown in Table XV, are concordant with those
obtained for all datasets. The p-value computed by the Friedman
test is smaller than 0.000001. AV-W6 obtains the best ranking
and significantly outperforms all the remaining methods.

4) Statistical Analysis for Very High Imbalance Ratio: In
this case, the p-value computed by the Friedman test is 0.574894,
which indicates that the hypothesis of equivalence between the
five considered methods can be accepted. In Table XVI, the
Friedman aligned ranks are shown. It is interesting to note that
in this case, SMOTE-RSB∗-SVM gets the best rank, while AV-
W6 obtains the highest mean AUC.

E. Graphical analysis

To complement the statistical study from the previous section,
we have also provided a graphical analysis that compares the
behavior of our best two proposals (AV-W6 and AV-W4) to its
closest competitors among the state-of-the-art methods. To this
end, Fig. 3 plots the considered method’s AUC (Y axis) for all
datasets, which are ordered on the X axis according to their IR.
Similarly, in Fig. 4, we show a more fine-grained analysis de-
picting the results for each of the experiment blocks, considering
in each case the best performing algorithms.



1634 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 23, NO. 5, OCTOBER 2015

Fig. 4. AUC for all blocks of datasets. Datasets are ordered according to their IR. (a) IR < 9 Low Imbalance. (b) IR ≥ 9 High Imbalance (c) IR ≥ 33 Very High
Imbalance.

In both figures, we can see that for both low and very high IR
datasets, the compared methods behave more or less similarly
and that the most noticeable differences are in the middle section
(IR between 9 and 33), where our method AV-W6 clearly shows
the best performance.

VII. CONCLUDING REMARKS

In this paper, we have presented the IFROWANN method, a
new algorithm level solution to two-class imbalanced classifica-
tion problems that is based on the FRNN method and on OWA
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aggregation. In particular, we considered six weighting strate-
gies, combined with three different indiscernibility relations.

Our experimental results and statistical analysis have shown
that IFROWANN can outperform not only the classical FRNN
algorithm over a large collection of imbalanced datasets with
varying IR degrees, but also a selection of state-of-the-art rep-
resentative algorithms that cover algorithm level, cost-sensitive,
and ensemble solutions specifically designed for imbalanced
learning.

For future work, we will consider the integration of
IFROWANN within ensemble methods, where it can be com-
bined with data level (preprocessing) techniques to further op-
timize the classification performance. Another possible refine-
ment of the approach concerns the automated extraction of OWA
weight vectors and indiscernibility relations from the training
data, using either a wrapper method, or basing ourselves on
data characteristics, such as the IR or other data complexity
measures.

Finally, our third idea for future work is to extend
IFROWANN to handle multiclass problems. One solution is
to transform a multiclass problem into a two-class problem us-
ing binarization techniques such as the one-versus-one approach
(OVO) introduced by Hastie and Tibshirani [27] and the one-
versus-all approach (OVA) of Rifkin and Klautau [39]. In [18], a
complete experimental study for the classification of multiclass
imbalanced datasets, which concluded that the OVO strategy
is a better option than OVA, has been presented. This allows
us to design a new method for multiclass problems combin-
ing OVO and IFROWANN. Another solution will be to mod-
ify the IFROWANN itself to directly operate with multiclass
problems.
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